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ABSTRACT 
Let G be a simple connected graph of order n and L(G) be its line graph. A subset S of V is called a dominating set 

of G if every vertex of V – S is adjacent to some vertex in S. The domination number γ(G) of G is the minimum 

cardinality taken over all dominating sets of G. In this paper, we characterize regular graphs and unicyclic graphs of 

odd order for which γ(G) + γ(L(G)) = n − 2. 
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I. INTRODUCTION 
 

Let G = (V, E) be a connected graph of order n and size m. The undefined terms and notations can be found in [5]. 

In 1956, Nordhaus and Gaddum [12] gave the lower and upper bound for the sum and product of chromatic number 

of a graph and its complement. In 1972, Jaeger and Payan [6]  proved the same for domination number. The line 

graph L(G) of a graph whose vertex set is E(G) and two vertices of L(G) are adjacent if and only if the 

corresponding edges are adjacent in G. The concept of edge domination was introduced by Mitchell and Hedetniemi 

[10]. A subset S' of E is called an edge dominating set of G if every edge not in S' is adjacent to some edge in S'. The 

edge domination number γ'(G) of G is the minimum cardinality taken over all edge dominating sets of G. The 

domination number of a line graph L(G) of a graph G is the same as an edge domination number of a graph, that is 

γ'(G) = γ(L(G)). Recently [11], the authors characterized lower and upper bound for the sum γ(G) + γ(L(G)). In this 

paper, we characterize γ(G) + γ(L(G)) = n − 2 for  regular graphs and unicyclic graphs of odd order. 

 

II. PRELIMINARY RESULTS   
 

The following results are required for our main theorems. 

 

Theorem 2.1. ([4,13])  For a graph G with even order n and no isolated vertices, γ(G) = n / 2 if and only if the 

components of G are the cycle C4 or the corona H o K1 for any connected graph H. 

 

In [3] E. J. Cockayne, et al characterized connected graphs for which γ(G) = . For this characterization, they 

defined six classes of graphs by using the following families of graphs. Let  

 = {C4}  {G : G = H o K1, where H is connected} 

and   =  − {C4}  

 

For any graph H, (H) denote the set of connected graphs, each of which can be formed from H o K1 by adding a 

new vertex x and edges joining x to one or more vertices of H. Then define  

(H)  

 

 

 

 

 

 

Figure : 1 
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Fig. 1. 

 

where the union is taken over all graphs H. Let y be a vertex of a copy of C4 and, for G ϵ , let θ(G) be the graph 

obtained by joining G to C4 with the single edge xy, where x is the new vertex added in forming G. Then define 

 = {θ(G) : G ϵ } 

 

Next, let u, v, w be a vertex sequence of a path P3. For any graph H, let (H) be the set of connected graphs which 

may be formed from H o K1 by joining each of u and w to one or more vertices of H. Then define  

(H) 

 

Let H be a graph and X ϵ . Let (H, X) be the set of connected graphs which may be formed from H o K1 by 

joining each vertex of  U  V(X) to one or more vertices of H such that no set with fewer than γ(X) vertices of X 

dominates V(X) – U. Then define   

(H, X). 

Theorem 2.2.([3]) A connected graph  satisfies γ(G) =  if and only if . 

 

Theorem 2.3.([14]) If G is a connected graph with δ(G) ≥ 3, then γ(G)  ≤ (3n)/8. 

 

Theorem 2.4.([2]) For any graph  ≤ γ(G) ≤  n − Δ(G). 

 

Theorem 2.5.([8]) If a graph G has no isolated vertices and γ(G) ≥ 3, then γ(G) ≤ (n + 1 − δ)/2. 

 

Theorem 2.6.([1]) For any connected graph G of even order n, γ'(G) = n/2 if and only if G is isomorphic to Kn or 

Kn/2, n/2. 

The graph obtained by identifying the centre of a subdivided star S(S1, k) with a vertex of C3 is denoted by C3, k.  

The graph obtained by joining the centre of subdivided star S(S1, k)  with a vertex of  C4 by an edge e is denoted by 

C4, k(e).  

 

Theorem 2.7.([1]) Let G be a connected unicyclic graph. Then  γ'(G) =  if and only if G isomorphic to C4, C5, 

C7, C3,k, C4,k (e) for some k ≥ 0. 

Lemma 2.8 Let H be any subgraph of G. Then γ(G) ≤ γ(H) + γ(G − V(H)). 

 

Lemma 2.9 If H is a subgraph of G, then γ'(G) ≤ γ'(H) + γ'(G − E(H)). 
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Notation 2.10 ([7]) If G is a graph with vertex set V = {u1, u2,…}, then the graph obtained by identifying one of the 

end vertices of n2 copies of P2, n3 copies of P3 at u1, m2 copies of P2, m3 copies of P3…. at u2…. is denoted by 

G[u1(n2P2, n3P3,….); u2(m2P2, m3P3,….); …..]. 

 

III. MAIN RESULTS 
 

Theorem 3.1 Let G be a connected unicyclic graph of odd order n ≥ 5. Then γ(G) + γ(L(G)) = n − 2 if and only if G 

is isomorphic to one of the graphs G1, G2, ….., G29 given in Figure 2. 

 

Proof: Let G be a connected unicyclic graph of odd order n ≥ 5.  If γ(G) + γ(L(G)) = n − 2, then we have the 

following two cases. 

 

Case: 1 γ(G) = (n − 3)/2 and γ'(G) = (n − 1)/2. 

By Theorem 2.7, G isomorphic to C5, C7, C3,k, C4,k(e) for some k ≥ 0. But γ(G) = (n − 1)/2 for these graphs. 

 

Case: 2 γ(G) = (n − 1)/2 and γ'(G) = (n − 3)/2. 

By Theorem 2.2,  . If G ϵ , then it is easy to verify that γ(L(G)) = γ’(G) = (n − 1)/2 for these graphs. 

 

Subcase: 2.1 G ϵ  

If H is connected, then by Lemma 2.9, diam(H) = 1 or 2 and so H is either K2 or star or C3 or C4 or C5 or C3[u(kP2)]. 

If H is a star, then x is adjacent to exactly two vertices of H. Hence G is isomorphic to G1 or G2 which satisfy the 

hypothesis. If H = C3 or C4 or C5 or C3[u(kP2)], then x is adjacent to exactly one vertex of H. When H = C4 or C5 or 

C3[u(kP2)], we observe that, γ'(G) = (n − 5)/2 ≠ (n − 3)/2. If H = C3, then G is isomorphic to G3 which satisfy the 

hypothesis. If H is disconnected, let H1, H2,…, Hs be the components of H.  Clearly exactly one component, say Hi 

is nontrivial and diam(Hi) = 1 or 2 and other Hj’s (j ≠ i) are trivial. Then by the previous argument for Hi, G is 

isomorphic to G4 or G5 or G6  which satisfy the hypothesis. 

 

Subcase 2.2 G ϵ  

If H is connected, then we observe that diam(H) = 1 or 2. By the definition of , H must be either K2 or star. Hence 

G is isomorphic to G7 or G8 which satisfy the hypothesis. If H is disconnected, then exactly one of its components is 

non-trivial whose diameter is 1 or 2 and others are trivial. Hence G is isomorphic to G9 or G10 which satisfy the 

hypothesis. 

 

Subcase 2.3 G ϵ  

If H is connected, then by Lemma 2.9, diam(H) = 1or 2 and so H is a star or C3 or C4 or C5 or C3[u(kP2)]. If H is a 

star, then both u and w are adjacent to exactly one vertex of H (or) u and w are adjacent to two distinct vertices of H. 

Hence G is isomorphic to G11, G12 or G13 which satisfy the hypothesis. If H = C3 or C4 or C5 or C3[u(kP2)], then 

either u or w is a pendant vertex (say w). When H = C4, C5 or C3[u(kP2)], we observe that, γ'(G) = (n − 5)/2 ≠ (n − 

3)/2. If H = C3, then G ϵ G6.  

If H is disconnected, let H1, H2,…, Hs be the components of H. Then we have the following two cases. 

 

Case: 2.3.1 Either u or w is a pendant vertex (say w). 

Then exactly one component, say Hi is non-trivial and  diam(Hi) = 1 or 2 and other Hj’s (j ≠ i) are trivial. If Hi is a 

star, then u is adjacent to exactly two vertices of Hi and it is adjacent to each vertex of  Hj = K1 (j ≠ i). Hence G is 

isomorphic to G4 or G5.  Clearly Hi = C3; otherwise γ'(G)  < (n − 3) /2. If Hi = C3, then u is adjacent to exactly one 

vertex to each component of H. Hence G is isomorphic to G6. 

 

Case: 2.3.2 Both u and w are not pendant vertices. 

Then < uvw > is isomorphic to C3 or P3.  If < uvw > is isomorphic to C3, then u and w are adjacent to different 

components of H and Hi must be a tree.  If Hi is trivial, then G is isomorphic to G14 for which γ'(G) = (n − 3) /2.  If 

diam(Hi)  ≤  2, then Hi is a star and G is isomorphic to G15 or G16 which satisfy the hypothesis. Now let   < uvw > be 

isomorphic to P3. If H = C3 or C4 or C5 or C3[u(kP2)], then by Lemma 2.9, γ’(G) < (n − 3)/2. Hence Hi must be  a 

tree and note that diam(Hi) = 0 or 1 or 2. Since Hi  is a tree, both u and w are adjacent to exactly one vertex of Hi (or) 

u and w are adjacent to two distinct vertices of  Hi. If diam(Hi) = 0, (Hi = K1 for all i), then G is isomorphic to G17. If 

diam (Hi) ≤  2, then Hi is a star. Hence G must be one of the graphs G18, G19, G20 which satisfy γ’(G) = (n − 3)/2. 
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Subcase 2.4 G ϵ  

By the definition of , X  must be C3 or C5. 

 

Case 2.4.1:   X = C3. 

If  H is connected,  then  H is a tree with diam(H) ≤ 2 and so H is either  or a star K1, r(r ≥ 1). Clearly |V(U)| must 

be 1. If  H = K1, then G is isomorphic to C3, 1 but γ'(G) = (n − 1)/2 ≠ (n − 3)/2. If  H is a star, then G is isomorphic to 

G21 or G22 which satisfy the hypothesis. If H is disconnected, then it is either totally disconnected or exactly one 

component, say Hi is of diameter at most 2 and other components Hj’s (j ≠ i) are trivial. It is clear that  H = K1 or a 

star and |V(U)| = 1 or 2. Suppose |V(U)| = 1. If Hi = K1,  then G is isomorphic to C3, k but γ'(G) = (n − 1)/2 ≠ (n − 

3)/2.  If  Hi  is a star, then G is isomorphic to G23 or G24. Suppose |V(U)| = 2. If Hi = K1, then G is isomorphic to G14. 

If Hi is a star, then G is isomorphic to G15 or G16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure : 2 
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Fig. 2 Unicyclic Graphs satisfying γ(G) + γ(L(G)) = n − 2 

 

 

Case 2. 4. 2:   X = C5. 

If  H is connected, then H  is a tree with diam(H)  ≤  2 and |V(U)| = 1. If H = K1, then G is isomorphic to G25. If H is 

a star, then G is isomorphic to G26 or G27. If H is disconnected, then each component of H is trivial and |V(U)| = 1 or 

2. If  |V(U)| = 1, then G is isomorphic to G28. |V(U)| = 2, then G is isomorphic to G29.   

 

Conversely, if G is isomorphic to G1, G2, …, G29, then it can be easily verified that γ(G) + γ(L(G)) = n − 2. 

The following lemma 3.2  is useful for Theorem  3.3. 

 

 

Lemma  3.2 If G is a connected 4-regular graph of order 11, then γ(G) = 3. 

 

Proof : Let G be a connected 4-regular graph of order 11. Clearly γ(G) ≥ 3. Let S be a γ-set of G. Let v be an 

arbitrary vertex of G and N(v) = {v1, v2, v3, v4}. Consider G' = G − N[v]. Since |V(G')| = 6,  let V(G') = {v5, v6, v7, 

v8, v9, v10}. Clearly γ(G') ≠ 1. Let S' be a γ-set of G'. If  |S'| = 2, then S'  {v} is a γ-set of G and hence γ(G) = 3.  Let 
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E1 denote the set of edges between the vertices of G’ and  N(v) in G. Since G is 4-regular, |E1| ≤ 12 and  G' has at 

most two isolated vertices. 

 

Case 1: G' has two isolated vertices. 

Let v5, v6 be the two isolated vertices in G' which are adjacent to all the vertices of  N(v) in G. Then the remaining 

components of G' are either 2K2 or  K3+{e} or  C4 or  C4+{e}  or  K1, 3  or  P4 or  K4.  Since |E1| = 12, G' =  K4  2K1  

and v1 is adjacent to both v5 and v6. Then S = {v, v1, v7} is a minimum dominating set of G and hence γ(G) ≤ 3 and 

so γ(G) = 3. 

 

Case 2 : G' has one isolated vertex (say, v5). 

Then G' is isomorphic to H  K1, where |V(H)| = 5. Since |E1| ≤ 12,  H is connected and  has at most one pendant 

vertex and Δ(H) = 3 or 4. If Δ(H) = 4, let d(v6) = 4 in G'. Then S = {v, v5, v6} is a minimum dominating set of G and 

hence γ(G) = 3. Now consider the case for Δ(H) = 3. Let d(v6) = 3 in H and V(H −  N[v6]) = v10. Clearly v10 must be 

adjacent to at least one of the vertices of N(v), (say v1) in G. Then S = {v, v1, v6} is a minimum dominating set of G 

and hence γ(G) ≤ 3 and so γ(G) = 3. 
 

Case 3 : G' has no isolated vertices. 

Since |E1| ≤ 12, G’ is connected and is isomorphic to C3 o K1. Let V(C3) = {v5, v6, v7} and v8, v9, v10 be the 

corresponding pendant vertices of  v5, v6, v7  in G'. Since at least one N(v), say v1 must be adjacent to v8, v9, v10. 

Then    S = {v, v1, v5} is a minimum dominating set of G and hence γ(G) ≤ 3 and so γ(G) = 3. This completes the 

proof. 

 

Theorem 3.3 Let G be a connected  k-regular graph of order n ≥ 5. Then γ(G) + γ(L(G)) = n − 2 if and only if G is 

isomorphic to either K5, K6 , K4,4 or any one of  the graphs F1, F2 given in Figure 3. 

 

Figure : 3 

 

 
Fig. 3 Regular graphs satisfying γ(G) + γ(L(G)) = n − 2 

 

 

 

 

 

 

 

 

 

Figure : 4 

Volume LXXIV, Issue X, 2025                                                                    Istorijski Casopis

ISSN: 0350-0802                               https://istorijskicasopis.eu/                                Page 34



 
Fig. 4 All 4-regular connected graphs of order 9 

 

Proof: Assume that γ(G) + γ(L(G)) = n − 2.  Then we have the following two cases. 

 

Case 1:  n is even 

If γ(G) = n /2 and γ'(G) = (n / 2) − 2, then by Theorem 2.1 and hypothesis, no graph exists. If γ(G) = (n/2) – 2 and       

γ'(G) = n /2, then by Theorem 2.6, G is isomorphic to Kn or Kn/2, n/2. If G = Kn, then γ(G) = 1 = (n / 2) – 2 which 

gives n = 6 and hence G = K6. If G = Kn/2, n/2, then γ(G) = 2 = (n/2) – 2 which gives n = 8 and hence G = K4,4. 

 

Case 2: n is odd 

If γ(G) = (n − 1)/2 and γ'(G) = (n − 3)/2, then by Theorem 2.2, G is either C5 or C7  for which     γ'(G)  = (n − 1)/2 ≠ 

(n − 3)/2. Now we consider the case γ(G) = (n − 3)/2 and γ'(G)  = (n − 1)/2. If G is 2-regular, then G = Cn. We 

observe that γ'(Cn) =  = (n − 1)/2 which gives n = 5 and hence G = C5 but  γ(G) = 2  ≠ (n − 3)/ 2. If k ≥ 3, then 

by Theorem 2. 3, n ≤ 12. Since n is odd, k must be even and by hypothesis,     n ϵ {5, 7, 9, 11}. If n = 5, then G = K5 

for which γ(G) = 1 = (n − 3)/2 and γ'(G)  = 2 = (n − 1)/2. If  n = 7, then k must be either 4 or 6. If k = 6, then G = K6 

for which γ(G) = 1 ≠ (n − 3)/2. If  k = 4, then by [8], there are exactly two graphs F1, F2 which are satisfy the 

hypothesis. If n = 9, then k = 4 or 6 or 8. If k = 4, then  by [8], there are sixteen 4-regular graphs of order 9 (See 

Figure 4) and it is easy to see that no graph satisfies the hypothesis. If k = 6, then by Lemma 2.8, γ(G) < (n − 3)/2, a 

contradiction. If k = 8, then G = K9 for which γ(G) = 1 ≠ (n − 3) /2. If n = 11, then  k = 4 or 6 or 8 or 10. If k = 6 or 8 

or 10, then it is easy to see that  γ(G) < (n − 3)/2.  If k = 4, then by Lemma 3.2, γ(G) = 3 ≠ (n − 3)/ 2. Converse is 

obvious by verification. 
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