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ABSTRACT
Let G be a simple connected graph of order n and L(G) be its line graph. A subset S of V is called a dominating set
of G if every vertex of V — S is adjacent to some vertex in S. The domination number y(G) of G is the minimum
cardinality taken over all dominating sets of G. In this paper, we characterize regular graphs and unicyclic graphs of
odd order for which y(G) + y(L(G)) =n — 2.
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l. INTRODUCTION

Let G = (V, E) be a connected graph of order n and size m. The undefined terms and notations can be found in [5].
In 1956, Nordhaus and Gaddum [12] gave the lower and upper bound for the sum and product of chromatic number
of a graph and its complement. In 1972, Jaeger and Payan [6] proved the same for domination number. The line
graph L(G) of a graph whose vertex set is E(G) and two vertices of L(G) are adjacent if and only if the
corresponding edges are adjacent in G. The concept of edge domination was introduced by Mitchell and Hedetniemi
[10]. A subset S' of E is called an edge dominating set of G if every edge not in S' is adjacent to some edge in S'. The
edge domination number y'(G) of G is the minimum cardinality taken over all edge dominating sets of G. The
domination number of a line graph L(G) of a graph G is the same as an edge domination number of a graph, that is
v'(G) = y(L(G)). Recently [11], the authors characterized lower and upper bound for the sum y(G) + y(L(G)). In this
paper, we characterize y(G) + y(L(G)) = n — 2 for regular graphs and unicyclic graphs of odd order.

. PRELIMINARY RESULTS
The following results are required for our main theorems.

Theorem 2.1. ([4,13]) For a graph G with even order n and no isolated vertices, y(G) = n/ 2 if and only if the
components of G are the cycle C4 or the corona H o K; for any connected graph H.

In [3] E. J. Cockayne, et al characterized connected graphs for which y(G) = Ln/2]. For this characterization, they
defined six classes of graphs by using the following families of graphs. Let

G,={Cs} v {G: G =HoKj, where H is connected}
and G:=A UB - {Cs}

For any graph H, £(H) denote the set of connected graphs, each of which can be formed from H o K; by adding a

new vertex x and edges joining x to one or more vertices of H. Then define
Gz =UgS(H)

Figure : 1

ISSN: 0350-0802 https://istorijskicasopis.eu/ Page 29



Volume LXXIV, Issue X, 2025 Istorijski Casopis

<J[I> X
LIS

Graphs in family A

AT

Graphs in family B

Fig. 1.

where the union is taken over all graphs H. Let y be a vertex of a copy of C, and, for G € G, let 6(G) be the graph
obtained by joining G to C4 with the single edge xy, where X is the new vertex added in forming G. Then define

G:={0(G): GefGs}

Next, let u, v, w be a vertex sequence of a path Ps. For any graph H, let F(H) be the set of connected graphs which
may be formed from H o K; by joining each of u and w to one or more vertices of H. Then define
Gs= Uz P(H)

Let H be a graph and X ¢ B. Let E(H, X) be the set of connected graphs which may be formed from H o K; by
joining each vertex of U £ V(X) to one or more vertices of H such that no set with fewer than y(X) vertices of X
dominates V(X) — U. Then define

QE- L'I}" X ‘R(H X)
Theorem 2.2.([3]) A connected graph G satisfies y(G) = In/2] ifand only if G € G = Uf_, G;.

Theorem 2.3.([14]) If G is a connected graph with 8(G) > 3, then y(G) < (3n)/8.

Theorem 2.4.([2]) For any graph G. In/(1 + A(G))] <v(G) < n— A(G).

Theorem 2.5.([8]) If a graph G has no isolated vertices and y(G) > 3, then y(G) < (n+ 1 — 3)/2.

Theorem 2.6.([1]) For any connected graph G of even order n, y'(G) = n/2 if and only if G is isomorphic to K, or
Kn/2, n/2.

The graph obtained by identifying the centre of a subdivided star S(S1, ) with a vertex of Cs is denoted by Cj, «.
The graph obtained by joining the centre of subdivided star S(S1,«) with a vertex of C, by an edge e is denoted by
C4, k(e).

Theorem 2.7.([1]) Let G be a connected unicyclic graph. Then v'(G) = Ln/2| if and only if G isomorphic to Ca, Cs,
C7, C3k, Cax (e) for some k> 0.

Lemma 2.8 Let H be any subgraph of G. Then y(G) <y(H) + y(G — V(H)).

Lemma 2.9 If H is a subgraph of G, then y'(G) <y'(H) + y'(G — E(H)).
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Notation 2.10 ([7]) If G is a graph with vertex set V = {uy, Uy,...}, then the graph obtained by identifying one of the
end vertices of n, copies of Py, n3 copies of Ps at ui, my copies of P,, ms copies of Ps.... at uy.... is denoted by
G[ul(nsz, naPs,....); uz(msz, msPs,....); .....].

I11. MAIN RESULTS

Theorem 3.1 Let G be a connected unicyclic graph of odd order n > 5. Then y(G) + y(L(G)) =n — 2 if and only if G
is isomorphic to one of the graphs Gy, G, ....., G2 given in Figure 2.

Proof: Let G be a connected unicyclic graph of odd order n > 5. If y(G) + y(L(G)) = n — 2, then we have the
following two cases.

Case: 1 y(G) = (n—3)/2 and y'(G) = (n — 1)/2.
By Theorem 2.7, G isomorphic to Cs, C7, Cz, Cak(e) for some k > 0. But y(G) = (n — 1)/2 for these graphs.

Case: 2 y(G) = (n—1)/2 and y'(G) = (n — 3)/2.
By Theorem 2.2, G € Uf_;G;. If G € G, then it is easy to verify that y(L(G)) = y’(G) = (n — 1)/2 for these graphs.

Subcase: 2.1 G €5,

If H is connected, then by Lemma 2.9, diam(H) = 1 or 2 and so H is either K; or star or C3 or C4 or Cs or C3[u(kP2)].
If H is a star, then x is adjacent to exactly two vertices of H. Hence G is isomorphic to G or G, which satisfy the
hypothesis. If H = C3 or C4 or Cs or Cs[u(kP2)], then x is adjacent to exactly one vertex of H. When H = C4 or Cs or
Cs[u(kP2)], we observe that, y'(G) = (n — 5)/2 # (n — 3)/2. If H = Cs, then G is isomorphic to Gs which satisfy the
hypothesis. If H is disconnected, let Hi, Ho,..., Hs be the components of H. Clearly exactly one component, say H;
is nontrivial and diam(H;) = 1 or 2 and other Hj’s (j # i) are trivial. Then by the previous argument for H;, G is
isomorphic to G4 or Gs or G which satisfy the hypothesis.

Subcase 2.2 G e,

If H is connected, then we observe that diam(H) = 1 or 2. By the definition of &, H must be either K; or star. Hence
G is isomorphic to G7 or Gg which satisfy the hypothesis. If H is disconnected, then exactly one of its components is
non-trivial whose diameter is 1 or 2 and others are trivial. Hence G is isomorphic to Gy or Gio which satisfy the
hypothesis.

Subcase 2.3 G e 5z

If H is connected, then by Lemma 2.9, diam(H) = 1or 2 and so H is a star or C3 or C4 or Cs or Cs[u(kP2)]. If H is a
star, then both u and w are adjacent to exactly one vertex of H (or) u and w are adjacent to two distinct vertices of H.
Hence G is isomorphic to Gi1, Gi2 or Gi3 which satisfy the hypothesis. If H = C3 or C4 or Cs or Cs[u(kP2)], then
either u or w is a pendant vertex (say w). When H = Ca, Cs or C3[u(kP2)], we observe that, y'(G) = (n — 5)/2 # (n —
3)/2. If H = Cs, then G € Ge.

If H is disconnected, let Hyi, Ho,..., Hs be the components of H. Then we have the following two cases.

Case: 2.3.1 Either u or w is a pendant vertex (say w).

Then exactly one component, say H; is non-trivial and diam(H;) = 1 or 2 and other Hj’s (j # i) are trivial. If H; is a
star, then u is adjacent to exactly two vertices of H; and it is adjacent to each vertex of Hj= K1 (j #i). Hence G is
isomorphic to G4 or Gs. Clearly Hj = Cs; otherwise y'(G) < (n — 3) /2. If Hi= Cs, then u is adjacent to exactly one
vertex to each component of H. Hence G is isomorphic to Ge.

Case: 2.3.2 Both u and w are not pendant vertices.

Then < uvw > is isomorphic to Cs or Ps. If < uvw > is isomorphic to Cs, then u and w are adjacent to different
components of H and H; must be a tree. If H; is trivial, then G is isomorphic to G4 for which y'(G) = (n — 3) /2. If
diam(Hi) < 2, then H; is a star and G is isomorphic to Gis or Gie Which satisfy the hypothesis. Now let < uvw > be
isomorphic to Ps. If H = Cz or C4 or Cs or Cs[u(kP2)], then by Lemma 2.9, y’(G) < (n — 3)/2. Hence H; must be a
tree and note that diam(H;) = 0 or 1 or 2. Since H; is a tree, both u and w are adjacent to exactly one vertex of H; (or)
u and w are adjacent to two distinct vertices of H;. If diam(Hi) = 0, (Hi = Ky for all i), then G is isomorphic to Gi7. If
diam (H;) < 2, then Hi; is a star. Hence G must be one of the graphs Gis, Gig, G20 which satisfy y’(G) = (n — 3)/2.
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Subcase 2.4 G e §¢
By the definition of Gz, X must be C; or Cs.

Case2.4.1: X=Cs

If H is connected, then H is a tree with diam(H) < 2 and so H is either K; or a star Ky, (r > 1). Clearly [V(U)| must
be 1. If H =Ky, then G is isomorphic to Cs 1 but y'(G) = (n— 1)/2 # (n — 3)/2. If H is a star, then G is isomorphic to
G21 or Gz, which satisfy the hypothesis. If H is disconnected, then it is either totally disconnected or exactly one
component, say H; is of diameter at most 2 and other components H;j’s (j # i) are trivial. It is clear that H=K; or a
star and [V(U)| = 1 or 2. Suppose |[V(U)| = 1. If H; = Ky, then G is isomorphic to Cs « but y'(G) = (n — 1)/2 # (n —
3)/2. If H; isastar, then G is isomorphic to Gz or Gaa. Suppose [V(U)| = 2. If H; = Ky, then G is isomorphic to Gia.
If Hi is a star, then G is isomorphic to Gis or Gs.

Figure : 2
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Fig. 2 Unicyclic Graphs satisfying y(G) + y(L(G)) =n — 2

Case2.4.2: X=C:s
If His connected, then H is a tree with diam(H) < 2 and [V(U)| = 1. If H = K3, then G is isomorphic to Gzs. If H is

a star, then G is isomorphic to Gs or Gy7. If H is disconnected, then each component of H is trivial and [V(U)| = 1 or
2.1f [V(U)| = 1, then G is isomorphic to Gas. [V(U)| = 2, then G is isomorphic to Gag.

Conversely, if G is isomorphic to G, G, ..., G2o, then it can be easily verified that y(G) + y(L(G)) =n — 2.

The following lemma 3.2 is useful for Theorem 3.3.

Lemma 3.2 If G is a connected 4-regular graph of order 11, then y(G) = 3.

Proof : Let G be a connected 4-regular graph of order 11. Clearly y(G) > 3. Let S be a y-set of G. Let v be an

arbitrary vertex of G and N(v) = {v1, vz, V3, Va}. Consider G' = G — N[v]. Since |V(G")| = 6, let V(G") = {vs, Vs, V7,
Vs, Vg, V1o}. Clearly y(G') # 1. Let S' be a y-set of G'. If |S'| = 2, then S' U {v} is a y-set of G and hence y(G) =3. Let
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E; denote the set of edges between the vertices of G” and N(v) in G. Since G is 4-regular, |E1] < 12 and G' has at
most two isolated vertices.

Case 1: G' has two isolated vertices.

Let vs, Vs be the two isolated vertices in G' which are adjacent to all the vertices of N(v) in G. Then the remaining
components of G' are either 2K, or Ks+{e} or Csor Cs+{e} or Ki 3 or Psor Ka. Since [E;| =12, G'= Kq U 2K;
and v is adjacent to both vs and ve. Then S = {v, v1, v7} is a minimum dominating set of G and hence y(G) < 3 and
so y(G) =3.

Case 2 : G' has one isolated vertex (say, Vs).

Then G' is isomorphic to H U K;, where [V(H)| = 5. Since |E1| < 12, H is connected and has at most one pendant
vertex and A(H) =3 or 4. If A(H) =4, let d(ve) =4 in G". Then S = {v, vs, Ve} is @ minimum dominating set of G and
hence y(G) = 3. Now consider the case for A(H) = 3. Let d(ve) = 3 in H and V(H — NJ[ve]) = v10. Clearly vio must be
adjacent to at least one of the vertices of N(v), (say vi) in G. Then S = {v, vi, Vs} is a minimum dominating set of G
and hence y(G) < 3 and so y(G) = 3.

Case 3 : G' has no isolated vertices.

Since |E1| < 12, G’ is connected and is isomorphic to Cs 0 Ki. Let V(C3) = {vs, Vs, V7} and vs, Vg, Vio be the
corresponding pendant vertices of vs, v, vz in G'. Since at least one N(v), say vi1 must be adjacent to vs, Vg, Vio.
Then S ={v, vy, vs} is a minimum dominating set of G and hence y(G) < 3 and so y(G) = 3. This completes the
proof.

Theorem 3.3 Let G be a connected k-regular graph of order n > 5. Then y(G) + y(L(G)) =n — 2 if and only if G is
isomorphic to either Ks, Kg , Ka,4 Or any one of the graphs F1, F2 given in Figure 3.

Figure : 3

Fy
Fig. 3 Regular graphs satisfying y(G) + p(L(G)) =n — 2

Figure : 4
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Fig. 4 All 4-regular connected graphs of order 9

Proof: Assume that y(G) + y(L(G)) =n — 2. Then we have the following two cases.

Case 1: niseven

If y(G) =n /2 and y'(G) = (n/ 2) — 2, then by Theorem 2.1 and hypothesis, no graph exists. If y(G) = (n/2) — 2 and
v'(G) = n /2, then by Theorem 2.6, G is isomorphic to K, or Kup, n2. If G = K, then y(G) =1 = (n/ 2) — 2 which
gives n = 6 and hence G = Ke. If G = Knp2, n2, then y(G) = 2 = (n/2) — 2 which gives n = 8 and hence G = Ks..

Case 2: nis odd

If y(G) = (n — 1)/2 and y'(G) = (n — 3)/2, then by Theorem 2.2, G is either Cs or C; for which  y'(G) =(n—1)/2 #
(n — 3)/2. Now we consider the case y(G) = (n — 3)/2 and y'(G) = (n — 1)/2. If G is 2-regular, then G = C,. We
observe that y'(Cy) = [n/3] = (n — 1)/2 which gives n =5 and hence G = Cs but y(G) =2 # (n—3)/ 2. Ifk > 3, then
by Theorem 2. 3, n < 12. Since n is odd, k must be even and by hypothesis, ne{5,7,9,11}. If n=5,then G =Ks
for which y(G) = 1=(n—3)/2 and y'(G) =2 =(n—1)/2. If n=7, then k must be either 4 or 6. If k = 6, then G = Ks
for which y(G) = 1 # (n — 3)/2. If k = 4, then by [8], there are exactly two graphs F1, F» which are satisfy the
hypothesis. If n =9, then k = 4 or 6 or 8. If k = 4, then by [8], there are sixteen 4-regular graphs of order 9 (See
Figure 4) and it is easy to see that no graph satisfies the hypothesis. If k = 6, then by Lemma 2.8, y(G) < (n — 3)/2, a
contradiction. If k = 8, then G = Kg for which y(G)=1#(n—3) /2. Ifn=11, then k=4 or 6 or 8 or 10. If k=6 or 8
or 10, then it is easy to see that y(G) < (n — 3)/2. If k =4, then by Lemma 3.2, y(G) = 3 # (n — 3)/ 2. Converse is
obvious by verification.
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