

THE ENDOWMENT STRUCTURE OF TYPE-III UNICYCLIC GRAPHS: A COMPREHENSIVE STUDY

Emma Miller¹, Benjamin Adams², Lily Walker³, and Jacob Lee^{*4}

¹ Department of Computer Science, Stanford University, USA

² Department of Physics, Massachusetts Institute of Technology, USA

ABSTRACT

Let $G = (V, E)$ be a non empty, finite, simple graph. A dominating set of a graph G containing a minimum dominating set of G is called a γ - endowed dominating set of G . If that set is of cardinality k then it is called a $k\gamma$ - endowed dominating set. $k - \gamma_r$ enresdowed graph is one in which every restrained dominating set of cardinality k contains a minimum restrained dominating set. Consider a cycle graph G , in which a set of different paths is attached to every vertex of the cycle. In this paper, the enresdowedness property for the unicyclic graphs with a set of different paths attached to every vertex of the cycle is obtained.

Keywords: Enresdowed graphs, Unicyclic graphs.

I. INTRODUCTION

Let $G = (V, E)$ be a non empty, finite, simple graph. A subset D of $V(G)$ is called a dominating set of G if for every $v \in V - D$, there exists $u \in D$ such that u and v are adjacent. The minimum cardinality of the dominating set is called the domination number and it is denoted by $\gamma(G)$. The restrained dominating set of a graph is a dominating set in which every vertex in $V - D$ is adjacent to some other vertex in $V - D$ [6]. The minimum cardinality of the restrained dominating set is called the restrained domination number and it is denoted by $\gamma_r(G)$. A graph is said to be $k - \gamma_r$ enresdowed graph if every restrained dominating set of cardinality k contains a minimum restrained dominating set. Consider a unicyclic graph G which contains a cycle C_n , $n \geq 3$, and a set of paths P_t , $t \geq 2$, where these set s , $s \geq 1$ of different paths are attached to each vertex of C_n . Anders Sune Pedersen, Preben Dahl Vestergaard obtained the upper and lower bounds for the number of independent sets in a unicyclic graph in terms of its order[1]. A unicyclic graph is a connected graph with a unique cycle. A unicyclic graph is called fully loaded if every vertex on its unique cycle has degree at least three[7]. Joanna Raczek characterize all connected unicyclic graphs with the domination multisubdivision number equal to three[2].

II. RESULTS ON TYPE – III UNICYCLIC ENRESADOWED GRAPHS

Definition 2.1

Let k be a positive integer. A simple, finite, non trivial graph $G = (V, E)$ is called a $k - \gamma_r$ enresdowed graph if every restrained dominating set of G of cardinality k contains a minimum restrained dominating set γ_r of G .[5]

Definition 2.2

Let G be a unicyclic graph $C_n P_t$, for $n \geq 3$, $t \geq 2$. Let $\{v_i\}$, $1 \leq i \leq n$ be the set of vertices of C_n . The graph G contains a set of n copies of distinct paths $\{P_{it_j}\}$, $1 \leq i \leq n$ and $2 \leq j \leq s_i$, which are attached to each vertex $\{v_i\}$, $1 \leq i \leq n$ of the cycle C_n , for $n \geq 3$. The set of vertices $\{v_i\}$, $1 \leq i \leq n$ is considered as the initial vertex for the set of all paths $\{P_{it_j}\}$, $1 \leq i \leq n$, $2 \leq j \leq s_i$ attached to each $\{v_i\}$, $1 \leq i \leq n$.

Theorem 2.3

Let G be a unicyclic graph $C_n P_t$, for $n \geq 3$ and $t \geq 2$. Let $\{v_i\}$, $1 \leq i \leq n$ be the set of vertices of C_n . The graph G contains a set of n copies of distinct paths $\{P_{it_j}\}$, $1 \leq i \leq n$ and $2 \leq j \leq s_i$, which are attached to each vertex $\{v_i\}$, $1 \leq i \leq n$ of the cycle C_n , for $n \geq 3$, such that the cardinality of any path P_{it_j} , $1 \leq i \leq n$, $2 \leq j \leq s_i$ is not same as any other path $P_{it_{j+1}}$, for $1 \leq i \leq n$, $2 \leq j \leq s_i$ which are attached to same v_i , $1 \leq i \leq n$ in G . The set of vertices $\{v_i\}$, $1 \leq i \leq n$ of the cycle C_n , for $n \geq 3$ is considered as the initial vertices for the set of all paths $\{P_{it_j}\}$, $1 \leq i \leq n$,

$2 \leq j \leq S_i$, attached to it. Let D be the minimum restrained dominating set of G , then G is $k - \gamma_r$ enresdowed for any k , where $\gamma_r \leq k \leq n + \left| \bigcup_{\substack{i=1 \\ 2 \leq j \leq S_i}}^n P_{it_j} - S_i \right|$

Proof

Given G is a unicyclic graph $C_n P_t$, for $n \geq 3$ and $t \geq 2$. Let $\{v_1, v_2, v_3, \dots, v_i, \dots, v_n\}$, $1 \leq i \leq n$, be the set of all vertices of the cycle C_n , $n \geq 3$. Let P_{1t_2} be a path P_2 , which consist of the vertex set $\{u_{1,21}, u_{1,22}\}$, such that the vertex $u_{1,21} = v_1$, P_{1t_3} be a path P_3 , with the vertex set $\{u_{1,31}, u_{1,32}, u_{1,33}\}$, where the vertex $u_{1,31} = v_1$, P_{1t_4} be a path P_4 , with the vertex set $\{u_{1,41}, u_{1,42}, u_{1,43}, u_{1,44}\}$ such that the vertex $u_{1,41} = v_1$. Without loss of generality, consider any path P_{1t_l} , where P_{1t_l} be a path P_l , $2 \leq l \leq S_1$, which contains the vertex set $\{u_{1,l1}, u_{1,l2}, u_{1,l3}, \dots, u_{1,lu}\}$ where the vertex $u_{1,l1} = v_1$. Proceeding similarly, consider any path $P_{1t_{S_1}}$, where the path $P_{1t_{S_1}}$ is a path P_{S_1} which consist of the vertex set $\{u_{1,S_11}, u_{1,S_12}, u_{1,S_13}, \dots, u_{1,S_1S_1}\}$, such that the vertex $u_{1,S_11} = v_1$. Thus the set of vertices $\{u_{1,21}, u_{1,22}, u_{1,31}, u_{1,32}, u_{1,33}, u_{1,41}, u_{1,42}, u_{1,43}, u_{1,44}, \dots, u_{1,l1}, u_{1,l2}, u_{1,l3}, \dots, u_{1,lu}, \dots, u_{1,S_11}, u_{1,S_12}, u_{1,S_13}, \dots, u_{1,S_1S_1}\}$, belongs to the paths $P_{1t_2}, P_{1t_3}, P_{1t_4}, \dots, P_{1t_l}, \dots, P_{1t_{S_1}}$ of G , where these sets of all paths are attached to the vertex v_1 of C_n .

Without loss of generality, consider another new set of paths $P_{2t_2}, P_{2t_3}, P_{2t_4}, \dots, P_{2t_l}, \dots, P_{2t_{S_2}}$ which are attached to the vertex v_2 of C_n for $n \geq 3$. Let the path P_{2t_2} be a path P_2 , with the vertex set $\{u_{2,21}, u_{2,22}\}$, where the vertex $u_{2,21} = v_2$ and P_{2t_3} be a path P_3 , which consist of the vertex set $\{u_{2,31}, u_{2,32}, u_{2,33}\}$, such that the vertex $u_{2,31} = v_2$. Let P_{2t_4} be a path P_4 with the vertex set $\{u_{2,41}, u_{2,42}, u_{2,43}, u_{2,44}\}$ where the vertex $u_{2,41} = v_2$. Without loss of generality consider any path P_{2t_l} where P_{2t_l} be a path P_l , $2 \leq l \leq S_2$, with the set of vertices $\{u_{2,l1}, u_{2,l2}, u_{2,l3}, \dots, u_{2,lu}\}$, such that the vertex $u_{2,l1} = v_2$. Finally consider any path $P_{2t_{S_2}}$, where the path $P_{2t_{S_2}}$ is a path P_{S_2} which consist of the vertex set $\{u_{2,S_21}, u_{2,S_22}, u_{2,S_23}, \dots, u_{2,S_2S_2}\}$, such that the vertex $u_{2,S_21} = v_2$. Thus the set of vertices $\{u_{2,21}, u_{2,22}, u_{2,31}, u_{2,32}, u_{2,33}, u_{2,41}, u_{2,42}, u_{2,43}, u_{2,44}, \dots, u_{2,l1}, u_{2,l2}, u_{2,l3}, \dots, u_{2,lu}, \dots, u_{2,S_21}, u_{2,S_22}, u_{2,S_23}, \dots, u_{2,S_2S_2}\}$ which belongs to the set of paths $\{P_{it_j}\}$, for $i = 2$, and $2 \leq j \leq S_2$.

In general, consider a new set of paths, $P_{it_2}, P_{it_3}, P_{it_4}, \dots, P_{it_l}, \dots, P_{it_{S_i}}$, $1 \leq i \leq n$. These paths are attached to the vertex v_i , $1 \leq i \leq n$ of C_n for $n \geq 3$. Let P_{it_2} be a path P_2 , with the vertex set $\{u_{i,21}, u_{i,22}\}$, such that the vertex $u_{i,21} = v_i$, $1 \leq i \leq n$. The path P_{it_3} be a path P_3 which consist of the set of vertices $\{u_{i,31}, u_{i,32}, u_{i,33}\}$, where the vertex $u_{i,31} = v_i$, $1 \leq i \leq n$. Let P_{it_4} be a path P_4 with the vertex set $\{u_{i,41}, u_{i,42}, u_{i,43}, u_{i,44}\}$, such that the vertex $u_{i,41} = v_i$, $1 \leq i \leq n$. Similarly consider any path P_{it_l} , where P_{it_l} is a path P_l , $2 \leq l \leq S_i$, $1 \leq i \leq n$ which consist of the set of vertices $\{u_{i,l1}, u_{i,l2}, u_{i,l3}, \dots, u_{i,lu}\}$, such that the vertex $u_{i,l1} = v_i$, $1 \leq i \leq n$. Finally consider any path $P_{it_{S_i}}$, $1 \leq i \leq n$, where the path $P_{it_{S_i}}$ is a path P_{S_i} which consist of the vertex set $\{u_{i,S_i1}, u_{i,S_i2}, u_{i,S_i3}, \dots, u_{i,S_iS_i}\}$, for $1 \leq i \leq n$, such that the vertex $u_{i,S_i1} = v_i$, $1 \leq i \leq n$. Then the set of vertices $\{u_{i,21}, u_{i,22}, u_{i,31}, u_{i,32}, u_{i,33}, u_{i,41}, u_{i,42}, u_{i,43}, u_{i,44}, \dots, u_{i,l1}, u_{i,l2}, u_{i,l3}, \dots, u_{i,lu}, \dots, u_{i,S_i1}, u_{i,S_i2}, u_{i,S_i3}, \dots, u_{i,S_iS_i}\}$ belongs to the set of paths $P_{it_2}, P_{it_3}, P_{it_4}, \dots, P_{it_l}, \dots, P_{it_{S_i}}$, $1 \leq i \leq n$.

Proceeding similarly, consider a new set of paths in G . Let P_{nt_2} , be a path P_2 , with the vertex set $\{u_{n,21}, u_{n,22}\}$, where the vertex $u_{n,21} = v_n$. The path P_{nt_3} , be a path P_3 , which consist of the set of vertices $\{u_{n,31}, u_{n,32}, u_{n,33}\}$ such that the vertex $u_{n,31} = v_n$. Let P_{nt_4} be a path P_4 , with the vertex set $\{u_{n,41}, u_{n,42}, u_{n,43}, u_{n,44}\}$, where the vertex $u_{n,41} = v_n$. Proceeding similarly, consider the path P_{nt_l} , where P_{nt_l} , $2 \leq l \leq S_n$ is a path P_l which contains the set of vertices $\{u_{n,l1}, u_{n,l2}, u_{n,l3}, \dots, u_{n,lu}\}$, such that the vertex $u_{n,l1} = v_n$. Finally, consider the path $P_{nt_{S_n}}$, where the path $P_{nt_{S_n}}$ is a path P_{S_n} with the vertex set $\{u_{n,S_n1}, u_{n,S_n2}, u_{n,S_n3}, \dots, u_{n,S_nS_n}\}$, where the vertex $u_{n,S_n1} = v_n$. Then the set of vertices $\{u_{n,21}, u_{n,22}, u_{n,31}, u_{n,32}, u_{n,33}, u_{n,41}, u_{n,42}, u_{n,43}, u_{n,44}, \dots, u_{n,l1}, u_{n,l2}, u_{n,l3}, \dots, u_{n,lu}, \dots, u_{n,S_n1}, u_{n,S_n2}, u_{n,S_n3}, \dots, u_{n,S_nS_n}\}$, belongs to the set of paths $P_{nt_2}, P_{nt_3}, P_{nt_4}, \dots, P_{nt_l}, \dots, P_{nt_{S_n}}$, where these set of paths are attached to the vertex v_n of C_n . Thus the graph $G = C_n P_t$, for $n \geq 3$ and $t \geq 2$ is obtained.

Let D be the minimum restrained dominating set of G . The set of all paths $\{P_{it_j}\}$, $1 \leq i \leq n$ and $2 \leq j \leq S_i$ will be of any one of the following types.

Case (i) Suppose if $P_{it_l} = P_{3m-1}$, for $m \geq 1, 1 \leq i \leq n$, where $l = 2, 5, 8, \dots$, then the path P_{it_l} be P_l , where the vertex set of P_l , be $\{u_{i,l1}, u_{i,l2}, u_{i,l3}, \dots, u_{i,ll}\}$ for $1 \leq i \leq n$, such that the vertex $u_{i,l1} = v_i$. Without loss of generality, choose the set of vertices $u_{i,l2}$, for $1 \leq i \leq n, l = 2, 5, 8, \dots$ for the γ_r set D from the path of the type P_{3m-1} , for $m \geq 1$, from each u_i then the set of vertices $u_{i,l3}$, for $l \neq 2$ where $l = 5, 8, \dots$ are dominated. Similarly choose the set of vertices $u_{i,l5}$, for $l = 5, 8, \dots$ for the γ_r set D, then the set of vertices $u_{i,l4}$, $l = 5, 8, \dots$ and $u_{i,l6}, 1 \leq i \leq n, l = 8, \dots$ are dominated, such that the set of vertices $u_{i,l3}$ and $u_{i,l4}, l = 5, 8, \dots$ are adjacent in $V - D$, similarly choose the set of vertices $u_{i,l8}$ for $l \neq 2, 5$, where $l = 8, 11, 14, \dots$ then the set of vertices $u_{i,l7}$, for $1 \leq i \leq n$ and $l = 8, 11, 14, \dots$ are dominated. Hence the set of vertices $u_{i,l6}$, for $l = 5, 8, \dots$ and $u_{i,l7}$, for $1 \leq i \leq n$ and $l = 8, 11, 14, \dots$ are adjacent in $V - D$. Thus Proceeding similarly, choose the set of all vertices $\{u_{i,ll}\}, l = 2, 5, 8, \dots$ for the γ_r set D, from the path of the type $P_{it_l} = P_{3m-1}$, for $m \geq 1, 1 \leq i \leq n$. Let $C_1 = \{u_{i,\square 2}, u_{i,\square 5}, u_{i,\square 8}, \dots, u_{i,\square \square}\}$ for $1 \leq i \leq n, l = 2, 5, 8, \dots$ be the set of vertices chosen from paths of type P_{3m-1} , for $m \geq 1$ for the γ_r set D.

Case (ii) If $P_{it_l} = P_{3m}$, for $m \geq 1, 1 \leq i \leq n$, where $l = 3, 6, 9, \dots$ then the path P_{it_l} be P_l , where the vertex set of P_l , be $\{u_{i,\square 1}, u_{i,\square 2}, u_{i,\square 3}, \dots, u_{i,\square \square}\}$ for $1 \leq i \leq n$, such that the vertex $u_{i,\square 1} = v_i$. Without loss of generality, choose the set of vertices $u_{i,\square 3}$, for $1 \leq i \leq n, l = 3, 6, 9, \dots$ for the γ_r set D from the path of the type P_{3m} , for $m \geq 1$, from each u_i then the set of vertices $u_{i,\square 2}$, for $1 \leq i \leq n, l = 3, 6, 9, \dots$ and $u_{i,\square 4}$, for $1 \leq i \leq n, l \neq 3$, where $l = 6, 9, 12, \dots$ are dominated. Since $\{u_{i,\square 1}\} = v_i$ for $1 \leq i \leq n, l = 3, 6, 9, \dots$ are already dominated by the set of vertices $\{u_{i,\square 2}\}$, for $l = 2$, for $1 \leq i \leq n$ which is chosen for the γ_r set D from the path of the type P_{3m-1} , for $m \geq 1$. Thus the two set of vertices $\{u_{i,\square 1}\} = v_i$ for $1 \leq i \leq n, l = 3, 6, 9, \dots$ and $\{u_{i,\square 2}\}$ for $l = 3, 6, 9, \dots, 1 \leq i \leq n$ are adjacent in $V - D$ of G. Similarly choose the set of vertices $\{u_{i,\square 6}\}$ for $1 \leq i \leq n, l \neq 3, l = 6, 9, 12, \dots$ for the γ_r set D, then the set $\{u_{i,\square 5}\}$ for $1 \leq i \leq n, l \neq 3, l = 6, 9, 12, \dots$ are dominated. Thus the sets $\{u_{i,\square 4}\}$ and $\{u_{i,\square 5}\}$ for $1 \leq i \leq n, l \neq 3, l = 6, 9, 12, \dots$ are adjacent in $V - D$. Proceeding similarly, choose the set of all vertices $\{u_{i,\square \square}\}, l = 3, 6, 9, \dots$, for the γ_r set D from the path of the type $P_{it_l} = P_{3m}$, for $m \geq 1, 1 \leq i \leq n, l = 3, 6, 9, \dots$ Let $C_2 = \{u_{i,\square 3}, u_{i,\square 6}, u_{i,\square 9}, \dots, u_{i,\square \square}\}$ for $1 \leq i \leq n, l = 3, 6, 9, \dots$ be the set of all vertices chosen for the γ_r set D.

Case (iii) If $P_{it_l} = P_{3m+1}$, for $m \geq 1, 1 \leq i \leq n, l = 4, 7, 10, \dots$ then the path P_{it_l} be P_l . The vertex set of the path P_l , be $\{u_{i,l1}, u_{i,l2}, u_{i,l3}, \dots, u_{i,ll}\}$ for $1 \leq i \leq n$, such that the vertex $u_{i,l1} = v_i$. Without loss of generality, choose the set of vertices as same as in the Case (ii). Thus choose the set of vertices $\{u_{i,l3}\}$, for $1 \leq i \leq n, l = 4, 7, 10, \dots$ and $\{u_{i,l6}\}$, for $1 \leq i \leq n, l \neq 4, l = 7, 10, 13, \dots$ for the γ_r set D and similarly choose as same as in the case(ii) where the set of all vertices $\{u_{i,ll-1}\}$ and $\{u_{i,ll}\}$, for $l = 4, 7, 10, \dots$, are considered for the γ_r set D. Let $C_3 = \{u_{i,l3}, u_{i,l6}, u_{i,l9}, \dots, u_{i,ll-1}, u_{i,ll}\}$ for $1 \leq i \leq n, l = 4, 7, 10, \dots$, be the set of all vertices chosen for the γ_r set D from the path of the type $P_{it_l} = P_{3m+1}$, for $m \geq 1$.

Thus the set $D = C_1 \cup C_2 \cup C_3$ where the set $D = \{u_{i,l2}, u_{i,l5}, u_{i,l8}, u_{i,l3}, u_{i,l6}, \dots, u_{i,ll-1}, u_{i,ll}\}$, for $1 \leq i \leq n, l \geq 2$ forms the γ_r set D of the unicyclic graph G, with cardinality $k = \gamma_r$. Thus G is $k - \gamma_r$ enresdowed for any $k = \gamma_r$.

Consider any set D_1 of cardinality $k_1 = \gamma_r + 1$, then there exists the following cases

Case (iii)(a) Consider any set D_{11} of cardinality $k_{11} = \gamma_r + 1$, where the set $D_{11} = D \cup \{u_{i,lr}\}, 1 \leq i \leq n, 2 \leq l \leq S_i, r \geq 2$, then there exists the following subcases.

Subcase (iii)(a₁) Consider a set $D_{11,1} = D \cup \{u_{i,lr}\}$, where $1 \leq i \leq n, 2 \leq l \leq S_i$, and $r = 2$. Then the set of vertices $\{u_{i,l2}\}$ is adjacent to the $\{v_i\}$, $1 \leq i \leq n$. By considering any vertices $\{u_{i,l2}\}$ which belongs to the $V - D$ set, for obtaining the restrained dominating set, there exists no isolates in the set $V - D_{11,1}$. Thus the set $D_{11,1}$ forms the restrained dominating set of cardinality $k_{11,1} = \gamma_r + 1$, containing the minimum restrained dominating set D. Hence G is $k_{11,1} - \gamma_r$ enresdowed.

Subcase (iii)(a₂) Consider a set $D_{11,2} = D \cup \{u_{i,lr}\}$, where $1 \leq i \leq n, 2 \leq l \leq S_i$, and $r > 2$, then the set of vertices $\{u_{i,lr}\}$ is not adjacent with any of the vertex $\{v_i\}$, $1 \leq i \leq n$. Since the set of vertices $\{u_{i,lr}\}$, where $1 \leq i \leq n, 2 \leq$

$l \leq S_i$, and $r > 2$, belongs to the path P_l , it is adjacent only to its adjacent vertices in P_l . Thus by considering this set of vertices $\{u_{i,lr}\}$ there exists an set of isolated vertices in the set $V - D_{11,2}$ and the set $D_{11,2}$ is not a restrained dominating set of cardinality $k_{11,2} = \gamma_r + 1$. Thus G is not $k_{11,2} - \gamma_r$ enresdowed.

Case (iii)(b) Consider any set $D_{12} = D \cup \{v_i\}, 1 \leq i \leq n$, which is of cardinality $k_{12} = \gamma_r + 1$. By considering any vertex $\{v_i\}, 1 \leq i \leq n$ from the cycle $C_n, n \geq 3$, then the vertex $\{u_{i,lr}\}$ for $l=3$ and $r=2, 1 \leq i \leq n$ form an isolate vertex in $V - D_{12}$. Therefore the set D_{12} is not a restrained dominating set of G . Hence G is not $k_{12} - \gamma_r$ enresdowed for any $k_{12} = \gamma_r + 1$. Thus G is $k_1 - \gamma_r$ enresdowed for any $k_1 = \gamma_r + 1$.

Consider any set D_2 of cardinality $k_2 = \gamma_r + 2$, then there exists the following cases.

Case (iii)(b₁) Consider any set $D_{21} = D \cup \{v_{i_1}, v_{i_2}\}$, $1 \leq i_1, i_2 \leq n$, where the vertices v_{i_1}, v_{i_2} belong to the cycle $C_n, n \geq 3$. The cardinality of the set D_{21} is $k_{21} = \gamma_r + 2$. By considering any set of vertices v_{i_1}, v_{i_2} from the cycle C_n there exists an isolates in the set $V - D_{21}$. Hence the set D_{21} is not a restrained dominating set of G . Therefore G is not $k_{21} - \gamma_r$ enresdowed.

Case (iii)(b₂) Consider the set $D_{22} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$. The set D_{22} is of cardinality $k_{22} = \gamma_r + 2$, then there exists the following subcases.

Subcase (iii)(b₂₁) Consider the set $D_{22,1} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, such that $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $l_1 = l_2$. Let $k_{22,1} = \gamma_r + 2$ be the cardinality of the set $D_{22,1}$. Thus the vertices $u_{i_1, l_1 r_1}$ and $u_{i_2, l_2 r_2}$ belong to the same path, then there exists the following subcases.

Subcase (iii)(b₂₁₍₁₎) Consider the set $D_{22,11} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $l_1 = l_2$. If the given two vertices $u_{i_1, l_1 r_1}$ and $u_{i_2, l_2 r_2}$ are adjacent in the same path. Then the set $V - D_{22,11}$ does not contain an isolate vertex. Thus the set $D_{22,11}$ forms an restrained dominating set containing the minimum restrained dominating set. Hence G is $k_{22,11} - \gamma_r$ enresdowed for any $k_{22,11} = \gamma_r + 2$.

Subcase (iii)(b₂₁₍₂₎) Consider the set $D_{22,12} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $l_1 = l_2$. If the vertices $u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}$ are not adjacent in the same path, since these vertices belong to a path, a set of vertices adjacent to $u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}$ in the path forms a set of isolates. Thus the set of isolate vertices exists in the set $V - D_{22,12}$. Thus the set $D_{22,12}$ is not a restrained dominating set of cardinality $k_{22,12} = \gamma_r + 2$. Hence G is not $k_{22,12} - \gamma_r$ enresdowed.

Subcase (iii)(b₂₂) Consider the set $D_{22,2} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, such that $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $l_1 \neq l_2$, then the following subcases exists.

Subcase (iii)(b₂₂₍₁₎) Consider the set $D_{22,21} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $i_1 = i_2$, then there exists the following subcases.

Subcase (iii)(b₂₂₍₁₁₎) Consider the set $D_{22,211} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $i_1 = i_2$, such that the vertices $u_{i_1, l_1 r_1}$ and $u_{i_2, l_2 r_2}$ belong to the different paths and they are attached to the same $v_i, 1 \leq i \leq n$ of $C_n, n \geq 3$, which result in non - existence of an isolate vertex in the set $V - D_{22,211}$. Hence the set $D_{22,211}$ forms a restrained dominating set containing the γ_r set D , with cardinality $k_{22,211} = \gamma_r + 2$. Therefore G is $k_{22,211} - \gamma_r$ enresdowed.

Subcase (iii)(b₂₂₍₁₂₎) Consider the set $D_{22,212} = D \cup \{u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}\}$, where $1 \leq i_1, i_2 \leq n, 2 \leq l_1, l_2 \leq S_{i_1}, r_1, r_2 \geq 2$ and $i_1 = i_2$, then the vertices $u_{i_1, l_1 r_1}, u_{i_2, l_2 r_2}$ which belong to different paths are not adjacent to any vertex $v_i, 1 \leq i \leq n$ of $C_n, n \geq 3$, then there exists isolates in $V - D_{22,212}$. Thus the set $D_{22,212}$ is not a restrained dominating set of cardinality $k_{22,212} = \gamma_r + 2$. Therefore G is not $k_{22,212} - \gamma_r$ enresdowed for any cardinality $k_{22,212} = \gamma_r + 2$.

Subcase (iii)(b₂₂₍₂₎) Consider the set $D_{22,22} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}\}$, where $1 \leq i_1, i_2 \leq n$, $2 \leq l_1, l_2 \leq S_{i_1}$, $r_1, r_2 \geq 2$ and $i_1 \neq i_2$. The vertices u_{i_1,l_1r_1} and u_{i_2,l_2r_2} belong to the different paths, where the paths are attached to the different vertices v_i , $1 \leq i \leq n$.

Subcase (iii)(b₂₂₍₂₁₎) Consider the set $D_{22,221} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}\}$, $1 \leq i_1, i_2 \leq n$, $2 \leq l_1, l_2 \leq S_{i_1}$, $r_1, r_2 \geq 2$ and $i_1 \neq i_2$, such that the vertices u_{i_1,l_1r_1} and u_{i_2,l_2r_2} are adjacent to the vertex v_i , $1 \leq i \leq n$. Then there exists no isolates in the set $V - D_{22,221}$. Hence the set $D_{22,221}$ forms a restrained dominating set containing the γ_r set D of G . The cardinality of the set $D_{22,221}$ be $k_{22,221} = \gamma_r + 2$. Hence G is $k_{22,221} - \gamma_r$ enresdowed.

Subcase (iii)(b₂₂₍₂₂₎) Consider the set $D_{22,222} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}\}$, where the vertices $u_{i_1,l_1r_1}, u_{i_2,l_2r_2}$ which belong to different paths of G and are not adjacent to v_i , $1 \leq i \leq n$, then there exists isolates in the set $V - D_{22,222}$. Thus the set $D_{22,222}$ is not a restrained dominating set of G with cardinality $k_{22,222} = \gamma_r + 2$. Hence G is not $k_{22,222} - \gamma_r$ enresdowed.

Case (iv) Consider the set $D_{23} = D \cup \{v_{i_1}, u_{i_1r_1}\}$, $1 \leq i_1, i \leq n$, $2 \leq l \leq S_{i_1}$, $r > 2$ and $\{v_i\}$, $1 \leq i \leq n$, be any vertex of the unicycle C_n , $n \geq 3$. By choosing any vertex from the cycle, the set of vertices adjacent to the vertex v_i form an isolated set of vertices, where the cardinality of the set D_{23} be $k_{23} = \gamma_r + 2$. Thus the set $V - D_{23}$ contains the isolated vertices and the set D_{23} is not a restrained dominating set. Thus G is not $k_{23} - \gamma_r$ enresdowed and G is $k_2 - \gamma_r$ enresdowed for any $k_2 = \gamma_r + 2$.

Case (v) Consider any set D_3 of cardinality $k_3 = \gamma_r + 3$, then the following subcases exists.

Case (v)(a) Consider the set D_{31} , where $D_{31} = D \cup \{v_{i_1}, v_{i_2}, v_{i_3}\}$, $1 \leq i_1, i_2, i_3 \leq n$. By choosing the vertices $v_{i_1}, v_{i_2}, v_{i_3}$ from the unicycle C_n , $n \geq 3$ for the set D_{31} , the set $V - D_{31}$ contains a set of isolated vertices. Thus the set D_{31} is not a restrained dominating set of cardinality $k_{31} = \gamma_r + 3$. Hence G is not $k_{31} - \gamma_r$ enresdowed.

Case (v)(b) Consider the set D_{32} , where the set $D_{32} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}, u_{i_3,l_3r_3}\}$, $1 \leq i_1, i_2, i_3 \leq n$, $2 \leq l_1, l_2, l_3 \leq S_{i_1}, r_1, r_2, r_3 \geq 1$ of cardinality $k_{32} = \gamma_r + 3$, then there exists the following subcases.

Subcase (v)(b₁) Consider the set $D_{32,1}$, where $D_{32,1} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}, u_{i_3,l_3r_3}\}$, $1 \leq i_1, i_2, i_3 \leq n$, $2 \leq l_1, l_2, l_3 \leq S_{i_1}$, $r_1, r_2, r_3 \geq 1$ and $r_1 = r_2 = r_3 \neq 1$. If these set of vertices $u_{i_1,l_1r_1}, u_{i_2,l_2r_2}$ and u_{i_3,l_3r_3} are adjacent either to the same vertex v_i or different v_i , $1 \leq i \leq n$, then there exists no isolates in the set $V - D_{32,1}$. Thus the set $D_{32,1}$ forms a restrained dominating set containing the minimum restrained dominating set of cardinality $k_{32,1} = \gamma_r + 3$. Hence G is $k_{32,1} - \gamma_r$ enresdowed.

Subcase (v)(b₂) Consider the set $D_{32,2} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}, u_{i_3,l_3r_3}\}$, $1 \leq i_1, i_2, i_3 \leq n$, $2 \leq l_1, l_2, l_3 \leq S_{i_1}$, $r_1, r_2, r_3 > 1$, where the set of vertices are chosen from the same path of the type P_{3m-1} , for $m \geq 1$, where the paths P_{3m-1} are attached to same v_i or different v_i , $1 \leq i \leq n$ then there exists isolates in the set $V - D_{32,2}$. The set $D_{32,2}$ is not a restrained dominating set of cardinality $k_{32,2} = \gamma_r + 3$. Hence G is not $k_{32,2} - \gamma_r$ enresdowed.

Case (vi) Consider the set D_{33} where $D_{33} = D \cup \{v_{i_1}, v_{i_2}, u_{i_1r_1}\}$, $1 \leq i_1, i_2, i \leq n$, $2 \leq l \leq S_i$, $r > 1$. The cardinality of the set D_{33} be $k_{33} = \gamma_r + 3$. Since the vertices of the cycle are chosen, the set D_{33} is not a restrained dominating set. Hence G is not $k_{33} - \gamma_r$ enresdowed.

Case (vii) Consider the set $D_{34} = D \cup \{u_{i_1,l_1r_1}, u_{i_2,l_2r_2}, v_i\}$, $1 \leq i_1, i_2, i \leq n$, $2 \leq l_1, l_2 \leq S_{i_1}$, $r_1, r_2 \geq 1$. Thus the existence of the vertex v_i of the cycle C_n , $n \geq 3$ in the set D_{34} results in the existence of isolates in the set $V - D_{34}$. Thus the set D_{34} is not a restrained dominating set of cardinality $k_{34} = \gamma_r + 3$. Hence G is not $k_{34} - \gamma_r$ enresdowed.

Proceeding similarly, consider any set D_4 of cardinality $k_4 = n + \left| \bigcup_{\substack{i=1 \\ 2 \leq j \leq S_i}}^n P_{it_j} - S_i \right| - 1$, then the set D_4 is not a restrained dominating set of G since there exists an isolate vertices in the set $V - D_4$. Hence G is not $k_4 - \gamma_r$ enresdowed. Without loss of generality, consider a set D_5 of cardinality k_5 , where the cardinality k_5 is the union of the cardinality of the set of all vertices of cycle C_n , $n \geq 3$ and the cardinality of the set of all vertices in each path

$\{P_{it_j}\}$, $1 \leq i \leq n$ and $2 \leq j \leq S_i$, except the set of all vertices $\{v_i\}, 1 \leq i \leq n$ of the cycle C_n . Therefore the cardinality k_5 is given by $n + \left| \bigcup_{\substack{i=1 \\ 2 \leq j \leq S_i}}^n P_{it_j} - S_i \right|$. Hence G is $k - \gamma_r$ enresdowed for any k , where $\gamma_r \leq k \leq n + \left| \bigcup_{\substack{i=1 \\ 2 \leq j \leq S_i}}^n P_{it_j} - S_i \right|$

REFERENCES

1. Anders Sune Pedersen, Preben Dahl Vestergaard, "The number of independent sets in unicyclic graphs" *Discrete Applied Mathematics*, Volume 152, Issues 1–3, 1 November 2005, pp. 246–256.
2. Joanna Raczek, "On Domination Multisubdivision Number Of Unicyclic Graphs", *Opuscula Math.* 38, no. 3 (2018), pp 409–425 <https://doi.org/10.7494/OpMath.2018.38.3.409>.
3. Omidi, G. R. On Integral Graphs with Few Cycles. *Graphs Combin.*, 25 (2009), 841–849.
4. Rodrigo O. Braga, Virgínia M. Rodrigues, Vilmar Trevisan, Locating Eigenvalues Of Unicyclic Graphs, *Appl. Anal. Discrete Math.* 11 (2017), 273–298.
5. Sumathi.P, Esther Felicia.R, Enresdowed graphs II, *Global Journal of Pure and Applied Mathematics*, Volume 13, Number 1, 2017, pp 229 – 232 .
6. Teresa W. Haynes, Stephen Hedetniemi, Peter J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, INC. New York, 1998.
7. Zhibin Du, Spectral Properties Of A Class Of Unicyclic Graphs, *Journal of Inequalities and Applications*. 2017; 2017(1): 96. doi: 10.1186/s13660-017-1367-2.